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1 Introduction

Recommender Systems (RS) [25] have the goal of suggesting toevery user the items
that might be of interest for her. In particular, RSs based onCollaborative Filtering
(CF) [2] rely on the opinions expressed by the other users. Infact, CF tries to auto-
matically find users similar to the active one and recommendsto this active user the
items liked by these similar users. This simple intuition iseffective in generating
recommendations and is widely used [25].

However, RSs based on CF suffer some inherent weaknesses that are intrinsic to
the process of finding similar users. In fact, the process of comparing two users with
the goal of computing their similarity involves comparing the ratings they provided
for items. And in order to be comparable, it is necessary thatthe two users rated
at least some of the same items. However in a typical domain, for example in the
domain of movies or books, the number of items is very large (in the order of the
millions) while the number of items rated by every single user is in general small
(in the order of dozens or less). This means that it is very unlikely two random users
have rated any items in common and hence they are not comparable. Another im-
portant and underconsidered weakness is related to the factthat RS can easily be
attacked by creating ad hoc user profiles with the goal of being considered as simi-
lar to the target user and influence the recommendations she gets. Other weaknesses
refer to the fact that RSs are sometimes reported as difficultto understand and con-
trol and to the fact that most of the current real deploymentsof RSs have been as
centralized servers, which are not under user control.

In order to overcome these weaknesses, we propose to exploittrust information
explicitly expressed by the users. Users are allowed to state how much they consider
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trustworthy each other user. In the context of RSs, this judgement is related to how
much they consider the ratings provided by a certain user as valuable and relevant.
This additional information (trust statements) can be organized in a trust network
and a trust metric can be used to predict the trustworthinessof other users as well
(for example, friends of friends). The idea here is to not search for similar users as
CF does but to search for trustable users by exploiting trustpropagation over the
trust network. The items appreciated by these users are thenrecommended to the
active user. We call this technique a Trust-aware Recommender System.

The goal of this chapter is to present a complete evaluation of Trust-aware Rec-
ommender Systems, by comparing different algorithms, ranging from traditional
CF ones to algorithms that utilise only trust information with different trust met-
rics, from algorithms that combine both trust and similarity to baseline algorithms.
The empirical evaluation is carried out on a real world, large dataset. We have also
evaluated the different algorithms against views over the dataset (for example only
on users or items satisfying a certain condition) in order tohightlight the relative
performances of the different algorithms.

The chapter is structured as follows. Section 2 presents themotivations for our
work in greater detail while Section 3 describes our proposal, focusing on the con-
cept of trust, introducing the architecture of Trust-awareRecommender Systems,
and commenting on related works. Section 4 is devoted to the experiments in which
we compared different algorithms and the experimental results are then summarized
and discussed in Section 5. Section 6 concludes the chapter.

2 Motivations

Ours is an Information society. The quantity of new information created and made
available every day (news, movies, scientific papers, songs, websites, . . . ) goes be-
yond our limited processing capabilities. This phenomenonhas been named “infor-
mation overload” and refers to the state of having too much information to make a
decision or to remain informed about a topic. The term was coined in 1970 by Alvin
Toffler in his book Future Shock [1].

Recommender Systems (RS) [25, 3] are tools designed to cope with information
overload. Their task is to pick out of the huge amount of new items created every
day only the few items that might be of interest for the specific user and that might
be worthy of her attention. Unsurprisingly, systems that automate this facility have
become popular on the internet. Online Recommender Systems(RS) [25, 3], in
fact, have been used to suggest movies, books, songs, jokes,etc. They have been an
important research line because they promise to fulfill the e-commerce dream [3]: a
different and personalized store for every single (potential) customer.

The most successful and studied technique for RSs is Collaborative Filtering [2]
(CF). CF exploits a simple intuition: items appreciated by people similar to some-
one will also be appreciated by that person. While Content-based RSs require a
description of the content of the items, Collaborative Filtering has the advantage of



Trust Metrics in Recommender Systems 3

relying just on the opinions provided by the users expressing how much they like a
certain item in the form of a rating. Based on these ratings, the CF system is able to
find users with a similar rating pattern and then to recommendthe items appreciated
by these similar users. In this sense, it does not matter whatthe items are (movies,
songs, scientific papers, jokes, . . . ) since the technique considers only ratings pro-
vided by the users and so CF can be applied in every domain and does not require
editors to describe the content of the items.

Matrix ReloadedLord of the Rings 2Titanic La vita è bella

Alice 2 5 5
Bob 5 1 3
Carol 5
Dave 2 5 5 4

Table 1 An example of a small users× items matrix of ratings.

The typical input of CF is represented as a matrix of ratings (see Table 1), in
which the users are the rows, the items the column and the values in the cells repre-
sent user rating of an item. In Table 1 for example, ratings can range from 1 (mini-
mum) to 5 (maximum).

The CF algorithm can be divided into two steps. Thefirst stepis the similar-
ity assessmentand consists of comparing the ratings provided by a pair of users
(rows in the matrix) in order to compute their similarity. The most used and effec-
tive technique for the similarity assessment is to compute the Pearson correlation
coefficient [2]. The first step produces a similarity weightwa,i for every active user
a with respect to every other useri.

wa,u =
∑m

i=1(ra,i − ra)(ru,i − ru)
√

∑m
i=1(ra,i − ra)2 ∑m

i=1(ru,i − ru)2
(1)

Thesecond stepis theactual rating predictionand consists of predicting the rat-
ing the active user would give to a certain item. The predicted rating is the weighted
sum of the ratings given by other user to that item, where the weights are the similar-
ity coefficient of the active user with the other users. In this way the rating expressed
by a very similar user has a larger influence on the rating predicted for the active
user. The formula for the second step is the following

pa,i = ra +
∑k

u=1wa,u(ru,i − ru)

∑k
u=1wa,u

(2)

wherepa,i represents the predicted rating that active usera would possibly provide
for item i, ru is the average of the rating provided by useru, wa,u is the user similarity
weight of a andu as computed in step one, andk is the number of users whose
ratings of itemi are considered in the weighted sum (called neighbours).

However the Collaborative Filtering technique suffers from some key weak-
nesses we have identified and discuss in the following.
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User similarity is often non computable.According to Equation 2, a user can be
considered as neighbour for the active user only if it is possible to compute the sim-
ilarity weight of her and the active user (wa,u). In fact, in order to be able to create
good quality recommendations, RSs must be able to compare the current user with
every other user to the end of selecting the best neighbours with the more relevant
item ratings. This step is mandatory and its accuracy affects the overall system accu-
racy: failing to find “good” neighbours will lead to poor quality recommendations.
However, the rating matrix is usually very sparse because users tend to rate few
of the available items (that can sum into the millions). Because of thisdata spar-
sity, it is often the case that two users don’t share the minimum number of items
rated in common required by user similarity metrics for computing similarity, and
the system is not able to compute the similarity weight. As a consequence, the sys-
tem is forced to choose neighbours from the small portion of comparable users and
will miss other non-comparable but possibly relevant users. Moreover, even when
two users share some commonly rated items, this number is usually very small and
hence the computed user similarity is a very unreliable quantity: for example, de-
ciding that two users are similar on the basis of the 3 movies they happened to both
rate is not a very reliable measure. This problem is less serious for users who have
already produced hundreds of ratings, but they are usually asmall portion of the user
base. Actually in most realistic settings most users have only provided a few or no
ratings at all. They are calledcold start usersand it can be argued that they are the
most important for RS since the system should be able to provide good recommen-
dations, despite the small rating information available about them, in order to give
them a reason to keep using the system and hence providing more ratings, which
would allow better recommendation computation. However they are the most chal-
lenging due to the small quantity of information available about them. Often RSs
fail on cold start users and are not able to produce recommendations for them with
the consequence of driving them away. We believe that this isa serious weakness
for RSs and that this aspect has been mainly neglected until now by the research
efforts because the most used dataset for evaluating Recommender Systems didn’t
present these features. We will see in Section 4 how in real world datasets, both data
sparsity and cold start users are the overwhelming reality.

Easy attacks by malicious insiders. Another weakness is related to attacks on
Recommender Systems [17]. Recommender Systems are often used in e-commerce
sites (for example, onAmazon.com). In these contexts, being able to influence rec-
ommendations could be very attractive: for example, an author may want to “force”
Amazon.comto always recommend the book she wrote. And in fact, gaming stan-
dard CF techniques is very easy. While this important aspect has been neglected
until recently, recently some recent studies have started to look at attacks of Recom-
mender Systems [17, 20]. The simplest attack is the copy-profile attack: the attacker
can copy the ratings of target users and fool the system into thinking that the at-
tacker is in fact the most similar user to the target user. In this way every additional
item the attacker rates highly will probably be recommendedto the target user. Cur-
rently RSs are mainly centralized servers, and it should be noted that in general it
is easy for a person to create countless fake identities, a problem that is also known
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as “cheap pseudonyms” [4]. E-commerce sites don’t have incentives to disclose this
phenomena and hence the impact of it on real systems is not known. Note however
that there is at least one disclosed precedent. An occurrence of this behavior has
been revealed publicly because of a computer “glitch” that occurred in February
2004 on the Canadian Amazon site. For several days this mistake revealed

the real names of thousands of people who had posted customerreviews of books
under pseudonyms [21]. By analyzing the real names, ti became evident that the
author of a book had in fact created many different pseudonyms on the Amazon
site and used all of them to write reviews about her book and rate it highly. The
possibility seriously undermines the functioning of Recommender Systems sites,
which rely on ratings provided by anonymous users.

Moreover, if the publishing of ratings and opinions becomesmore decentralized,
for example with Semantic Web formats such as hReview [5] (for items reviews)
or FOAF [10] (for expressing trust statements about people), these types of attacks
will increasingly become an issue. In fact, while registering on a centralized Rec-
ommender System site and providing ad-hoc attack ratings must generally be done
by hand and is a time consuming activity, on the Semantic Web or in other de-
centralized architectures such as P2P networks this activity could easily be carried
out with automatic programs (bots). Basically, creating such attacks will become
as widespread as email spam is today, or at least as easy. We hence believe that
coping with attacks is an important topic for the research community interested in
Recommender Systems.

Current Recommender Systems are hard for users to understand and control.An-
other weakness is that RSs are mainly conceived and perceived as black boxes [6]:
the user receives the recommendations but doesn’t know how they were generated
and has no control in the recommendation process. For example, in [7], the authors
conducted a survey with real users and found that users want to see how recommen-
dations are generated, how their neighbours are computed and how their neighbours
rate items. Swearingen and Sinha [6] analyzed RSs from a Human Computer In-
teraction perspective and found that RSs are effective if, among other things, “the
system logic is at least somewhat transparent”. Moreover, it seems that, as long as
RSs give good results, users are satisfied and use them, but, when they start recom-
mending badly or strangely, it is very difficult for the user to understand the reason
and to fix the problem; usually the user quits using the RS [8, 13]. Even if the RS
exposes what it thinks of you (explicit or implicit past ratings on items) and al-
lows the user to modify them, this is a complicated task, involving for example a
re-examination of dozens of past ratings in order to correctthe ones that are not
correct [8]. It has been claimed that “few of the Amazon usersrevise their profiles”
when the recommendations start becoming obviously wrong [13]. RSs use the step
of finding similar users only in propedeutic ways for the taskof recommending
items, but they don’t make the results of these computationsvisible to users, such as
possibly similar unknown users: CF automates the process ofrecommending items
but doesn’t help in discovering like minded people for community forming.

RS are mainly deployed as centralized servers. Presently, the most used RSs are
run as centralized servers where all the community ratings are stored and where the
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recommendations are computed for all users. This fact is a weakness for Recom-
mender Systems for more than one reason.

One consequence is that users profiles are scattered in many different, not co-
operating servers (for example, different subsets of a single user preferences about
books of can be stored with Amazon, Barnes and Nobles, and many other online
bookstores); every single server suffers even more sparseness and has problems in
giving good quality recommendations. Moreover, this meansusers cannot move
from one RS to another without losing their profiles (and consequently the possibil-
ity of receiving good recommendations and saving time). In essence, this situation
is against competition and can easily lead to a global monopoly because it is almost
impossible for new RSs to enter the market while, for consolidated RS owning much
user information, it is even possible to enter new correlated markets. Clearly, com-
panies prefer to not allow interoperability or publicity ofthis information because
it is their company value. Anyway, as long as this useful information will remain
confined in silos, it will not unveil all its potentially disruptive power. This lack of
portability is a serious weakness of current Recommender Systems [22].

Moreover, the entity running the centralized RS is usually acommercial product
vendor and its interests could be somehow different from giving the best recommen-
dations to the user [9]. In general, users are not free to testfor biases of the RSs or to
know the algorithm used for generating the recommendationsor to adapt it to their
preferences or to run a completely different one.

While it is theoretically possible to run current RSs in a decentralized way, for
example on the small device under user control such as a mobile, in practice Collab-
orative Filtering requires a large memory to store all the ratings and, mainly, a great
computation power to perform all the operations on the possibly very huge ratings
matrix.

We want also to point out how these centralized architectures are one of the
reasons behind the lack of datasets and real testbeds on which to apply and test
new research hypotheses related to RSs. It would be a totallydifferent scenario if
researchers could have access to all the rating informationcollected by centralized
Recommender Systems such as Amazon and other online bookstore for instance.
In fact, there were only few freely available datasets of ratings on items and they
were used for offline testing but, in order to run online experiments, researchers
had to invest a lot of time into creating their own RS and gathering enough users.
However, this is not an easy task: Grouplens working group atthe University of
Minnesota1 is a notable exception in this since it was able to get enough users for
its online Recommender System, Movielens, and they were very kind in sharing it
as a dataset usable by researchers.

In this section we have highlighted the weaknesses we believe beset current Rec-
ommender Systems. In the next section, we describe our proposal and how it allevi-
ates these weaknesses.

1 Grouplens homepage is at www.cs.umn.edu/Research/GroupLens
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3 Our proposal: Trust-aware Recommender Systems

In this section we summarize our proposal: Trust-aware Recommender Systems. We
start by introducing basic concepts about trust networks and trust metrics. We then
present the logical architecture of Trust-aware Recommender Systems. We conclude
this section by comparing our proposal with related work in the literature.

3.1 Trust networks and trust metrics

In decentralized environments where everyone is free to create content and there is
no centralized quality control entity, evaluating the quality of this content becomes
an important issue. This situation can be observed in onlinecommunities (for ex-
ample, slashdot.org in which millions of users post news andcomments daily), in
peer-to-peer networks (where peers can enter corrupted items), or in marketplace
sites (such as eBay.com, where users can create “fake” auctions) [12]. In these en-
vironments, it is often a good strategy to delegate the quality assessment task to the
users themselves. The system can ask users to rate other users: in this way, users
can express their level of trust in another users they have interacted with, i.e. issue
a trust statement such as “I, Alice, trust Bob as 0.8 in [0,1]”. The system can then
aggregate all the trust statements in a single trust networkrepresenting the relation-
ships between users. An example of a simple trust network canbe seen in Figure 1.
As a consequence of the previously introduced properties oftrust, such a network is
a directed, weighted graph whose nodes are peers and whose edges are trust state-
ments.

A

C

B

D

1.0

0.0
0.4

0.7

1.0

1.0

?

Fig. 1 Trust network. Nodes are users and edges are trust statements. The dotted edge is one of the
undefined and predictable trust statements.

Since in most settings, a user has a direct opinion (i.e. has issued a trust state-
ment) only about a small portion of the other peers, some computational tools can
be designed for predicting the trustworthiness of unknown peers. These tools are
Trust Metrics and Reputation Systems. The main idea behind these techniques is
trust propagation over the trust network: if peerA trusts peerB at a certain level and
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peerB trusts peerD at a certain level, something can be predicted about how much
A should trustD.

These tools are starting to become more and more needed and useful because,
thanks to the internet, it is more and more common to interactwith unknown peers.
Moreover, thanks to the internet, trust statements expressed by all peers can be pub-
lished and made available to anyone so that aggregating themand reasoning on them
is now becoming possible. This was not possible nor useful until a few years ago,
and in fact, computational ways to exploit trust have begun to be proposed only
very recently. In some sense, in order to get an idea of a certain peer’s trustworthi-
ness, we are relying on the judgments of other peers who have already interacted
with them and shared their impression. There are many different proposed Trust
Metrics [18, 10, 26, 15, 24].

An important distinction in Trust Metrics is in local and global [15]. Global Trust
Metrics compute a single trust score for each peer of the trust network. This trust
score is independent of the peer that is asking “How much should I trust this un-
known peer?”. Instead, Local Trust Metrics provide personalized scores. So a local
Trust Metric might suggest to peerAlice to trust peerCarol and to peerBob to
distrustCarol. Global Trust Metrics compute a score for each peer that represents
the average opinion of the whole community about that peer. Even if there is no
agreement yet on definitions, in general, this global value is called “reputation”
and “reputation systems” are what we called “global Trust Metrics”. But the defi-
nitions are not that clear and very often the term “reputation” and “trust” are used
synonymously just as “Reputation System” and “Trust Metric”. PageRank [24], for
example, is a global trust metric.

In the next section we will see how trust metrics can play a role in the context
of Recommender Systems, essentially we propose them for replacing or integrating
the users’ similarity assessment of step 1.

3.2 An Architecture of Trust-aware Recommender Systems

In this section we present the architecture of our proposed solution: Trust-aware
Recommender Systems. Figure 2 shows the different modules (black boxes) as well
as input and output matrices of each of them (white boxes). There are two input
informations: the trust matrix (representing all the community trust statements) and
the ratings matrix (representing all the ratings given by users to items). The output
is a matrix of predicted ratings that users would assign to items. The difference with
respect to traditional CF systems is the additional input matrix of trust statements.
The two logical steps of CF remain the same. The first step findsneighbours and
the second step predicts ratings based on a weighted sum of the ratings given by
neighbours to items. The key difference is in how neighboursare identified and how
their weights are computed. The weightwa,i in Equation 2 can be derived from the
user similarity assessment (as in traditional CF) or with the use of a trust metric.
In fact in our proposed architecture for the first step there are two possible modules
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able to produce these weights: a Trust Metric module or a Similarity Metric mod-
ule. They respectively produce the Estimated Trust matrix and the User Similarity
matrix: in both, rowi contains the neighbours of useri and the cell of columnj
represents a weight in[0,1] about how much userj is relevant for useri (trustable
or similar). This is the weightwa,i in Equation 2 and represents how much ratings
by useri should be taken into account when predicting ratings for user a (second
step). A more detailed explanation of the architecture can be found in [14]. In Sec-
tion 4 we are going to present experiments we have run with different instantiations
of the different modules. For the Trust Metric module we havetested a local and a
global trust metric. As local trust metric we have chosen MoleTrust [15], a depth-
first graph walking algorithm with a tunable trust propagation horizon that allows us
to control the distance to which trust is propagated. As global trust metric we have
chosen PageRank [24], probably the most used global trust metric. For the Simi-
larity Metric module we have chosen the Pearson CorrelationCoefficient since it is
the one that is reported to be performed best in [2]. Regarding the Rating Predictor
module (second step), we experimented with selecting only weights from the Esti-
mated Trust matrix or the User Similarity matrix and with combining them. For the
purpose of comparison, we have also run simple and baseline algorithms that we
will describe in next section.

Fig. 2 Trust-Aware Recommender System Architecture.

3.3 How trust alleviates RS weaknesses

In the previous Section, we have presented our proposal for enhancing Recom-
mender Systems by means of trust information.

In this section we discuss how Trust-aware Recommender Systems are able to al-
leviate the weaknesses besetting RSs that we have previously introduced. Section 4
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will be devoted to empirical evidence confirming the claims,based on experiments
run on a real world, large dataset.

The key new point of Trust-aware Decentralized RecommenderSystems is to
use trust propagation over the network constituted by truststatements in order to
predict a trust score for unknown peers. This trust score canbe used in the traditional
Recommender System model in place of or in addition to the value of user similarity
as a weight for the ratings of the specific peer.

The first weakness highlighted in Section 2 was thatoften user similarity between
two users is not computabledue to data sparsity. Instead, considering the trust state-
ments expressed by all the peers, it is possible to predict a trust score for a larger
portion of the user base. For example, by using a very simple global trust metric
like the one used by eBay (see Section 4), it can be enough thata peer received at
least one trust statement to be able to predict its trustworthiness. Even local trust
metrics, which propagate trust starting from active users,are able to reach a large
portion of the users in just a few propagation steps, considering that most social
networks are highly connected and exhibit small world characteristics. Another im-
portant point related to the computability of user similarity that we mentioned when
speaking about the weaknesses of current Recommender Systems is related tocold
start users. Cold start users are the most critical users for standard CFtechniques
that are not able to generate any recommendation for them. Viceversa, they can ben-
efit from the trust statements issued by other users. In particular, as soon as a cold
start user provides at least one trust statement, it is possible to use a local trust met-
ric. The local trust metric is able to propagate trust and predict trustworthiness for all
reachable users, so that their ratings can be used in the rating prediction process. Is-
suing just one trust statement can be an effective mechanismfor rapidly integrating
new users, especially if compared with standard CF where users are usually required
to rate at least 10 items before receiving a recommendation.A single trust statement
can make the difference between an environment populated byusers whose trust-
worthiness is totally uncertain to an environment in which it is possible to use a
local trust metric and predict how much ratings provided by many other users can
be taken into account.

With regard toattacks on Recommender Systems, considering trust informa-
tion can be effective as well. For example, against shillingattacks [20] in which
a user pretends to be similar to the user target of the attack.Trust-aware Rec-
ommender Systems can be used to consider only ratings provided by users pre-
dicted as trustworthy by the trust metric. Local Trust Metrics promise to be attack-
resistant [18, 26], as long as there is no trust path from the active user to the users
under control of the attacker. Essentially, while creatinga fake identity is very easy
and can be done by anyone [4], receiving a positive trust statement by a peer trusted
by the user target of the attack is not as easy since it dependson judgments not un-
der the control of the attacker. In our vision, exploiting oftrust information allows
being influenced only (or mainly) by “trustable” peers, either direct peers or indirect
ones (friends of friends). This can reduce the user base usedto find neighbours but
surely keeps out malicious and fake peers. The sharing of opinions about peers is
also a good way for detecting or spotting these attacks by virtue of a decentralized
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assessment process. In this way, malicious ratings provided by users under attacker
control are not taken into consideration when generating recommendations for the
active user, just as if they didn’t exist.

The possibility of only or mainly considering ratings provided by users whose
predicted trust score is above a certain threshold would help in alleviating the weak-
ness related to the fact that traditional RSs arecomputational expensiveness. In fact,
reducing the number of considered users a priori could allowthe algorithm to scale
even in a domain with millions of peers and to be run on less powerful devices.
For example, the trust metric might be designed to analyze just peers at distance
1 (on which the active peer issued direct trust statements) and peers at distance 2
significantly reducing the number of considered peers.

We reported in Section 2 how traditionalRS are often seen by users as black
boxes[7, 6] and thought hard to understand and control [8, 13]. RSsare consid-
ered more effective by users if, among other things, “the system logic is at least
somewhat transparent” [6]. We believe that the concept of direct trust is easier to
understand for users than the concept of user similarity. User similarity is computed
out of a formula, usually the Pearson Correlation coefficient, which is not too easy
to understand for a normal user [7]. A possible interface could communicate the
reasons behind a certain recommendation explicitly referring to ratings provided
by trusted users, with a text message like the following “this movie was recom-
mended to you because 3 of the users you trust (Alice, Bob, Charlie) rated it as
5 out of 5. You can see their user profiles and, in case the recommendation is not
satisfying to you, you can possibly revise your connectionswith them” with links
to these users’ profiles [10]. In fact, Sinha and Swearingen have found that people
prefer receiving recommendations from people they know andtrust, i.e., friends and
family-members, rather than from online Recommender Systems [19]. By showing
explicitly the users trusted by the active user, RSs may let the user feel that the
recommendations are in reality coming from friends and not from some obscure
algorithms. However we didn’t conduct Human Computer Interaction analysis and
survey with real users about different recommendation explanation interfaces.

The last weakness we introduced in Section 2 is related tocentralized architec-
turesthat are at the moment the most adopted for current RSs. We think Trust-aware
Recommender Systems demand a decentralized environment where all users publish
their information (trust and ratings) in some Semantic Web format and then every
machine has the possibility of aggregating this information and computing recom-
mendations on behalf of its users. In this way the rating prediction could be run
locally on a device owned by the human user for whom ratings are predicted [22].
In this setting, the single peer can decide to retrieve and aggregate information from
just a small portion of the peers, for example only ratings expressed by trusted peers.
In this way, it is not necessary to build the complete ratingsmatrix or the complete
trust network. This would reduce the computational power required for running the
predictions and the bandwidth needed for aggregating the ratings. Trust-aware De-
centralized Recommender Systems would not require very powerful computers, as
is often the case for centralized service providers, but would work on many simple
devices under the direct control of the human user.
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In this section, we have argued how Trust-awareness alleviates some of the weak-
nesses of standard Recommender Systems. The next section discusses work related
to our proposal.

3.4 Related work

There have been some proposals to use trust information in the context of Recom-
mender Systems. We will give an account of the most significant ones here.

In a paper entitled “Trust in recommender systems” [16], O’Donovan and Smyth
propose algorithms for computing Profile Level Trust and Item Level Trust. Profile
Level Trust is the percentage of correct recommendations that this producer has
contributed. Item Level Trust is a profile level trust that depends on a specific item.
As the reviewers note, this quantity represents more of a “competence” measure and
in fact reflects a sort of global similarity value. While in their work trust values are
derived from ratings (of the Movielens dataset), in our proposal trust statements are
explicitly expressed by users.

The PhD thesis of Ziegler [26] concentrates on RSs from different points of re-
search. Regarding the integration of trust, he proposes a solution very similar to
ours, i.e neighbour formation by means of trust network analysis. He has designed
a local trust metric, Appleseed [26], that computes the top-M nearest trust neigh-
bours for every user. He has evaluated algorithms against a dataset derived from
AllConsuming (http://allconsuming.net), a community of 3400 book readers, with
9300 ratings and 4300 trust statements. Only positive truststatements are available.
Ziegler found that hybrid approaches (using taxonomies of books and hence based
on content-based features of books) outperforms the trust-based one which outper-
forms the purely content-based one. Performances on users who provided few rat-
ings were not studied in detail.

Golbeck’s PhD thesis [10] focuses on trust in web-based social networks, how it
can be computed, and how it can be used in applications. She deployed an online
Recommender System, FilmTrust (http://trust.mindswap.org/filmTrust/) in which
users can rate films and write reviews and they can also express trust statements
in other users based on how much they trust their friends about movies ratings.
Trust statements in FilmTrust are weighted: users could express their trust in other
users on a ten level basis. Golbeck designed a trust metric called TidalTrust [10]
working in a breadth-first fashion similarly to MoleTrust [15]. We used MoleTrust
in our experiments because it has a tunable trust propagation horizon parameter that
lets us study how this parameter affects performances of theRecommender System.
It is interesting to note that Golbeck’s findings are similarto ours and that will be
reported in the next section.
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4 Empirical validation

In this Section we present experiments we have conducted forevaluating the perfor-
mances of Trust-aware Recommender Systems. In particular we compare different
instantiations of the modules of our proposed architecture(see Figure 2), so that the
evaluated systems range from simple algorithms used as baselines to purely Collab-
orative Filtering ones, from systems using only trust metrics, both global and local,
to systems that combine estimated trust and user similarityinformation. First we
describe the dataset used and introduce our evaluation strategy, then we present the
actual results of the experiments.

4.1 Dataset used in experiments: Epinions

The dataset we used in our experiments is derived from theEpinions.comweb site.
Epinions is a consumers opinion site where users can review items (such as cars,
books, movies, software, . . . ) and also assign numeric ratings to them in the range
from 1 (min) to 5 (max). Users can also express their Web of Trust, i.e. reviewers
whose reviews and ratings they have consistently found to bevaluable and their
Block list, i.e. a list of authors whose reviews they find consistently offensive, inac-
curate, or not valuable2. Inserting users in the Web of Trust is tantamount issuing
a trust statement of value 1, while inserting her in the BlockList equals to issuing
a trust statement of value 0 in their regard. Intermediate values such as 0.7 are not
expressible on Epinions.

In order to collect the dataset, we wrote a crawler that recorded ratings and trust
statements issued by a user and then moved to users trusted bythat users and recur-
sively did the same. Note, however, that the block list is kept private in Epinions in
order to let users express themselves more freely, therefore it is not available in our
dataset.

The Epinions dataset represents the most meaningful and large example where
ratings on items and trust statements on users have been collected in a real world
environment. We released the crawled dataset so that other researchers can val-
idate their hypotheses and proposals on it. The crawled dataset can be found at
www.trustlet.org/wiki/epinions.

Our dataset consists of 49,290 users who rated a total of 139,738 different items
at least once. The total number of reviews is 664,824. The total number of issued
trust statements is 487,181. Rating matrix sparsity is defined as the percentage of
empty cells in the matrix users× items and in the case of the collected dataset is
99.99135%. The mean number of created reviews is 13.49 with a standard deviation
of 34.16. It is interesting to look at what we have called “cold start users”. They are
the large majority of users. For example, 26,037 users expressed less than 5 reviews

2 This definition is from the Epinions.com Web of Trust FAQ
(http://www.epinions.com/help/faq/?show=faqwot)
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and represent 52.82% of the population. The mean number of users in the Web of
Trust (friends) is 9.88 with a standard deviation of 32.85. Another interesting point
is the distribution of ratings. In our dataset, 45% of the ratings are 5 (best), 29% are
4, 11% are 3, 8% are 2 and 7% are 1 (worst). The mean rating is hence 3.99. Note
that almost half of the ratings are a 5, i.e. the maximum possible value.

The characteristics we briefly described are very differentfrom those of the
Movielens dataset3, the most commonly used dataset for RSs evaluation. In par-
ticular, in Movielens dataset all the users are guaranteed to have voted at least 20
items while in Epinions more than half of them have voted lessthan 5 items (cold
start users). This also means that sparsity is much higher inEpinions and so finding
overlapping on provided ratings between users and hence possible neighbours (step
1 of CF) is even harder. While on Epinions most of the rating values are 5 and 4,
in Movielens all the different values are more balanced. This affects how different
algorithms perform as we will see in the following sections.

4.2 New evaluation measures

The most used technique for evaluating Recommender Systemsis based onleave-
one-out[11]. Leave-one-out is an offline technique that can be run ona previously
acquired dataset and involves hiding one rating and then trying to predict it with a
certain algorithm. The predicted rating is then compared with the real rating and the
difference in absolute value is the prediction error. The procedure is repeated for all
the ratings and an average of all the errors is computed, the Mean Absolute Error
(MAE) [11].

A first problem with MAE is that it weighs every error in the prediction of a rating
in the same way. For example, let us suppose that our dataset contains only 101
users: one user provided 300 ratings while all the remaining100 users provided just
3 ratings each. We call the first user a “heavy rater” and the other users “cold start
users”. In this way our dataset contains 600 ratings. The leave-one-out methodology
consists in hiding these 600 ratings one by one and then trying to predict them.
Typically CF works well for users who have already provided numerous ratings and
poorly on users who provided few ratings. A probable situation is that the error over
the predictions of the heavy rater is small while the error over the predictions of
the cold start users is high. However, in computing the Mean Absolute Error, the
heavy raters weigh just as much as all the other users since they provided a very
large number of ratings. This does not reflect the real situation in which there is
actually one user who is probably satisfied with the prediction error (the heavy rater)
and 300 users who are not satisfied (the cold start users). Forthis reason, the first
additional measure we introduce is Mean Absolute User Error(MAUE). The idea
is straightforward: we first compute the Mean Absolute Errorfor every single user
independently and then we average all the Mean Absolute Errors related to every

3 Distributed by Grouplens group at the University of Minnesota and available at
http://www.cs.umn.edu/Research/GroupLens/
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single user. In this way, every user has the same weight in theMean Absolute User
Error computation. This is very important since the Epinions dataset contains a large
share of cold start users. In our experiments (see next section), this distinction was
able to highlight different behaviours for different techniques that would otherwise
have remained hidden inside the MAE value.

Another important measure that is often not reported and studied in evaluation
of RSs is coverage. Herlocker et al. in their solid review of Recommender Systems
evaluation techniques [11] underline how it is important togo “beyond accuracy” in
evaluating RSs and count coverage as one step in this direction but also note how
few works have investigated it. Coverage simply refers to the fraction of ratings for
which, after being hidden, the RS algorythm is able to produce a predicted rating. It
might in fact be the case that some RS techniques are not able to predict the rating
a user would give to an item. Again we believe that coverage was understudied by
many research efforts because in Movielens, the most used dataset for evaluation of
RSs, the coverage over ratings tends to be close to 100%. Thisis due to the fact that
all the users are guaranteed to have voted at least 20 items and that there are some
items that are rated by almost every user. Instead on a very sparse dataset that con-
tains a large portion of cold start users and of items rated just by one user, coverage
becomes an important issue since many of the ratings become hardly predictable.
While the percentage of predictable ratings (ratings coverage) is an important mea-
sure, it has the same problem we highlighted earlier for MeanAbsolute Error, it
weighs heavy raters more. Following the same argument as before, we introduce
also theusers coverage, defined as the portion of users for which the RS is able
to predict at least one rating. In fact, it is often the case that a RS is successful in
predicting all the ratings for a user who provides many ratings and performs poorly
for a user who has rated few items. Going back to the example introduced earlier, it
might be that for the heavy rater who rated 300 items, the RS isable to predict all
of them, while it fails on all the ratings provided by the 100 cold start users. In this
case, the ratings coverage would be300

600 = 0.5. Viceversa the users coverage would
be 1

100 = 0.01.

A possibility given by a very large dataset of ratings is to study performances of
different RS techniques on different portions of the input data (called “views”) that,
given the large numbers, remain significant. It is possible for example to compute
MAE only on users who satisfy a certain condition. For example, as we already
mentioned, while it might be very easy to provide good quality recommendations to
a user who already provided 100 ratings to the system (heavy rater) and hence has
given a very detailed snapshot of her opinions, it might be much more difficult to
provide good quality recommendations to a user who has just joined the system and,
for example, has entered only 2 ratings. With this regard, itis possible to compute
evaluation measures such as MAE or users coverage only on these portions in order
to analyze how a certain technique works on a particular subset of the data.

Views can be defined over users, over items and over ratings depending on their
characteristics. We have already implicitly introduced many times the view over
users based on the number of ratings that they have provided:users who provided
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few ratings are called “cold start users” and users who provided many ratings are
called “heavy raters”. As acknowledged also by [23], evaluating the performances of
RSs in “cold start” situations has not been extensively covered in the literature. Our
evaluations will concentrate on the relative performancesof different techniques on
these different classes of users, such as cold start users, who provided from 1 to
4 ratings; heavy raters, who provided more than 10 ratings; opinionated users, who
provided more than 4 ratings and whose standard deviation isgreater than 1.5; black
sheep, users who provided more than 4 ratings and for which the average distance
of their rating on itemi with respect to mean rating of itemi is greater than 1

Revealing views can be defined also over items. In this chapter we report evalua-
tions performed on niche items, which received less than 5 ratings, and controversial
items, which received ratings whose standard deviation is greater than 1.5. Making
an error on a controversial item can be very serious and can mine the confidence
the user places in the RS, for example, a user would be very unsatisfied to receive
a recommendation for a movie about which she holds a clear andvery negative
opinion.

Additional views can be designed also on ratings. For example various measures
can be computed only on ratings whose value is 1, in order to analyze how a certain
technique performs on these ratings, or only on ratings whose value is greater or
equal to 4.

We introduce these views because they better capture the relative merits of the
different algorithms in different situations and better represent their weaknesses and
strengths.

4.3 Results of the experiments

Every different instantiation of the Trust-aware Recommender System architecture
is evaluated with regard to the measures we have defined (MAE,MAUE, ratings
coverage, users coverage), also focusing the analysis on the different views previ-
ously introduced, such as, for example, cold start users andcontroversial items. In
the following we discuss the results of the experiments condensed in Tables 2 and 3.
Figures 4 and 5 graphically present just one of the measures reported in the tables,
precisely the row labeled “Cold users” (i.e. MAE and ratingscoverage on predic-
tions for cold start users and MAUE and users coverage) in order to give the reader
a visual grasp of the relative benefits of the different techniques.

4.3.1 Trivial algorithms seem very effective

As a first step in our analysis we tested a very simple algorithm that always returns 5
as the predicted rating a user would give to an item. We call this algorithmAlways5.

predictionAlways5(a, i) = 5
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This trivial algorithm is not meaningful from a RS point of view since, for in-
stance, it does not allow to differentiate and prioritize the different items. However,
it allowed us to start exploring which MAE a simple algorithmwould achieve. The
MAE over all the ratings is 1.008. This result is not too bad, especially if we com-
pare it with more complex algorithms as we will do in the following.

Another trivial algorithm is the one we callUserMean. The idea of UserMean is
simply to return the mean of the ratings provided by one user.Remember that we
use leave-one-out as evaluation technique so we remove every single rating before
computing the prediction.

predictionUserMean(a, i) =
∑m

j=1(ra, j)

m

wherem is the number of items rated by usera.
The reason for such good performances is that in our dataset most of the rating

values are in fact 5 and this is a notable difference with respect to other datasets,
for instance MovieLens, on which these trivial algorithms work very badly. But in
our case we have two very simple and not personalized algorithms that seem to per-
form well enough. This fact suggested to us that just presenting the Mean Absolute
Error over all the ratings is not a useful way to compare different algorithms. We
introduced the evaluation views explained in Section 4.2 inorder to have an evalu-
ation technique better able to capture the relative merits of the different algorithms
in different situations and to better represent their weaknesses and strengths. In fact,
on the controversial items view for instance, these trivialalgorithms perform very
badly.

4.3.2 Simple average better than Collaborative Filtering

Another trivial algorithm is the one that predicts - as a rating for a certain item - the
unweighted average of all the ratings given to that item by all the users but the active
user. It is a non-personalized technique that is like assigning 1 as similarity or trust
weight to all the users in the second step of CF (Equation 2 with wa,i always equal
to 1). For this reason we call itTrustAll.

predictionTrustAll(a, i) = ra +
∑k

u=1(ru,i − ru)

k
(3)

To our surprise, TrustAll outperformed standard Collaborative Filtering algo-
rithms, achieving a MAE of 0.821 (against 0.843 of standardCF). On the other
hand, on MovieLens dataset, we observe the expected result:MAE of CF is 0.730
while MAE of TrustAll is 0.815. Moreover, the number of predictable Epinions rat-
ings (the coverage) is 51.28% for CF and 88.20% for TrustAll, while on Movielens
ratings they are both close to 100%. The reason for these important differences is in
the datasets. The Epinions dataset contains mostly 5 as rating value and most of the
users provided few ratings (cold start users). We believe these facts, not observed in
other RS datasets, allowed us to study certain characteristics of RS algorithms that



18 Paolo Massa and Paolo Avesani

Mean Absolute Error / Ratings Coverage

Views Algorithms
CF MT1 MT2 MT3 TrustAll

All 0.843
51.28%

0.832
28.33%

0.846
60.47%

0.829
74.37%

0.821
88.20%

Cold
users

1.094
3.22%

0.674
11.05%

0.833
25.02%

0.854
41.74%

0.856
92.92%

Heavy
raters

0.850
57.45%

0.873
30.85%

0.869
64.82%

0.846
77.81%

0.845
92.92%

Contr.
items

1.515
45.42%

1.425
25.09%

1.618
60.64%

1.687
81.01%

1.741
100.0%

Niche
items

0.822
12.18%

0.734
8.32%

0.806
24.32%

0.828
20.43%

0.829
55.39%

Opin.
users

1.200
50%

1.020
23.32%

1.102
57.31%

1.096
74.24%

1.105
92.80%

Black
sheep

1.235
55.74%

1.152
23.66%

1.238
59.21%

1.242
76.32%

1.255
97.03%

Table 2 Accuracy and coverage measures on ratings, for different RS algorithms on different
views.

were previously unexplored. The problem with CF in our dataset is that the Pearson
correlation coefficient (similarity weight output of the first step of CF) is often not
computable because of data sparsity and hence only the ratings of a small percent-
age of the other users can be utilized when generating a recommendation for the
active user. Since there is not too much variance in rating values (most of them are
5), an unweighted average is usually close to the real value.On cold start users, the
balance is even more for TrustAll. The coverage of CF on cold start users is only
3.22% while the coverage of TrustAll is 92.92% and the MAE of CF is 1.094 while
the MAE of TrustAll in 0.856. Note that in the real-world Epinions dataset, cold start
users make up more than 50% of total users. In fact, for a cold start user the first
step of CF almost always fails since it is very unlikely to findother users which have
rated the same few items and hence the similarity weight is not computable. How-
ever, these results are not totally dismissive of CF, in fact, on controversial items CF
outperforms TrustAll (MAE of 1.515 against 1.741). In this case, CF is able to just
consider the opinions of like minded users and hence to overcome the performances
of TrustAll, a technique that - not being personalized - performs more poorly. This
means that when it is really important to find like-minded neighbours CF is needed
and effective. Also note that the error over ratings received by controversial items
is greater than the error over all the ratings, meaning that it is harder to predict the
correct ratings for these items.

4.3.3 Trusted users are good predictors

In this subsection we start comparing performances of RS algorithms that use only
trust information (top box in Figure 2) with standard CF (bottom box). We start by
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using only the users explictly trusted by the active user, i.e. not propatagating trust
or setting the propagation horizon at 1 for the local Trust Metric MoleTrust. We call
this algorithmMT1.

The Formula is very similar to Formula 2, the only differencebeing that users
weights are derived from the direct trust statements.

predictionMT1(a, i) = ra +
∑k

u=1 trusta,u(ru,i − ru)

∑k
u=1 trusta,u

(4)

wherek is the number of users in which useru expressed a trust statement and
trusta,u is the value of the trust statement explicitly issued by usera about useru.
In the case of the analyzed dataset,k is the number of users in the Web of Trust
(friends) andtrusta,u has value 1.

In general, RSs based on trust propagation work better with cold start users. They
don’t use the (little) rating information for deriving a similarity measure to be used
as weight for that user, but use the trust information explicitly provided by the user.
In this way, even for a user with just one friend, it is possible that that friend has rated
the same items and hence evaluating the accuracy of a prediction becomes possible.
It is also possibly the case that that friend has very similartastes to the current user
and hence the error is small. In fact, the MAE of MT1 over cold start users is 0.674
while the MAE of CF is, as already discussed, 1.094. The difference in error is very
high and particulary relevant since it is important for RSs to provide personalized
recommendations as soon as possible to users who have not yetprovided many
ratings so that these users appreciate the system and keep using it, providing more
ratings. Moreover, cold start users are a very large portionof the users in our dataset.

Mean Absolute User Error / Users Coverage

Views Algorithms
CF MT1 MT2 MT3 TrustAll

All 0.938
40.78%

0.790
46.64%

0.856
59.75%

0.844
66.31%

0.843
98.57%

Cold
users

1.173
2.89%

0.674
17.49%

0.820
30.61%

0.854
42.49%

0.872
96.63%

Heavy
raters

0.903
86.08%

0.834
79.78%

0.861
88.42%

0.834
89.42%

0.820
100.00%

Contr.
items

1.503
15.76%

1.326
11.74%

1.571
21.66%

1.650
27.85%

1.727
37.16%

Niche
items

0.854
10.77%

0.671
10.27%

0.808
20.73%

0.843
32.83%

0.848
52.04%

Opin.
users

1.316
61.20%

0.938
60.74%

1.090
76.51%

1.092
79.85%

1.107
100.00%

Black
sheep

1.407
67.78%

1.075
60.83%

1.258
75.34%

1.285
77.70%

1.300
100.00%

Table 3 Accuracy and coverage measures on users, for different RS algorithms on different views.
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Let us now compare performances of CF and MT1 over all the ratings. The
MAUE achieved by MT1 and CF is respectively 0.790 and 0.938. Regarding predic-
tion coverage, while CF is able to predict more ratings than MT1 (ratings coverage
is 51.28% vs. 28.33%), MT1 is able to generate at least a prediction for more users
(users coverage is 46.64% vs. 40.78%). Summarizing, MT1 is able to predict fewer
ratings than CF but the predictions are spread more equally over all users (which can
then be at least partially satisfied) and, regarding errors,CF performs much worse
than MT1 when we consider the error achieved over every single user in the same
way and not depending on the ratings provided. These facts have the following rea-
son: CF works well - both in terms of coverage and in terms of error - for heavy
raters (users who already provided a lot of ratings) while itperforms very poorly on
cold start users. On many important views such as controversial items and opinion-
ated users MT1 outperforms both CF and TrustAll.

4.3.4 Propagating trust with a Local Trust Metric

In the previous section we analyzed performances of RS algorithms that consider
only trust information but don’t propagate trust.

One of the weaknesses we highlighted in Section 2 was the factthat user similar-
ity is often non computable and in this way the number of neighbours whose ratings
can be considered in Formula 2 is small. We claimed this was especially the case
for cold start users. We also claimed that, by using explicittrust statements and trust
propagation, it was possible to predict a trust score for many more users and use this
quantity in place of (or in combination with) the user similarity weight.

Here we analyze and compare the number of users for which it ispossible to
compute a user similarity value and a predicted trust one.
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All 49,290100.00% 160.73
5- 26037 52.82% 2.74
10- 33504 67.97% 11.27
20- 40597 82.36% 33.53
50+ 2661 5.40% 1447.88
100+ 882 1.79% 2162.52

Fig. 3 The thick line plots the number of users who have expressed a specific number of ratings.
For each of these users, the thin line plots how manycomparableusers exist in the system on
average. (By comparable we mean that the 2 users have rated at least 2 items in common). The
table groups results for class of users depending on number of expressed ratings.
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In Figure 3 we plot the number of comparable users averaged over all the users
who created a certain number of reviews. We define 2 users comparable if they
have rated at least 2 items in common. On every comparable user it is possible
to compute the Pearson correlation coefficient and to use it as a weight for that
user. Unsurprisingly, the users who created many reviews have a higher number of
users against which Pearson is computable. However the plotshows that even for
those users the coverage over user base is very limited: for example, the 54 users
who created 60 reviews have a mean number of users against which Pearson is
computable of 772.44 that is only the 1.57% of the entire userbase.

Figure 3 shows only a portion of the total graph, in fact they axis can go up to
49290 users and thex axis up to 1023 items. In an ideal system, it would be possible
to compare each user against every other user; in this case the mean number of users
would have been 49289 independently of the number of writtenreviews. Instead,
Figure 3 makes evident how on the Epinions dataset the technique is far from ideal.

Let us now concentrate on “cold start users”. For users who expressed less than
5 ratings (who are more than 50% of the users) Pearson Correlation Coefficient is
computable on average only against 2.74 users over 49290 (asshown in the row
labeled “5-” of Figure 3) and also only 1413 of the 26037 cold start users have at
least 10 users against which Pearson is computable. It is worth noting that, even
for the most overlapping user, Pearson correlation coefficient is computable only
against 9773 users that is just 19.83% of the entire population.

This plot is a stray evidence of how Pearson correlation coefficient is often not
computable and hence ineffective.

Let us now analyze the computability of predicted trust and compare it with
computatibilty of user similarity. We compute the number ofusers in which it is
possible to predict trust starting from a certain user as thenumber of users at a
certain distance from that user. In Table 4 we report the meannumber of users
reachable by propagating trust at different distances and the mean number of users
for which user similarity weight is computable. The standard CF technique (Pearson
correlation coefficient) on average allows computing user similarity only on a small
portion of the user base, precisely 160.73 over 49290 (less than 1%!). On the other
hand, by propagating trust it could be possible to infer trust in the other users and
use this value as an alternative weight when creating a recommendation. For the
average user, in one trust step it is possible to cover 9.88 users (direct friends), in
2 steps 399.89 users (friends of friends), in 3 steps 4386.32users, and in 4 steps
16333.94 users. In computing these values we also considered the users who were
not able to reach all the other users, for example the users who provided 0 friends.

The previous difference in coverage of the user base with thetwo techniques is
even exacerbated in the case of “cold start users”, users whoexpressed less than
5 ratings. The mean number of users against which Pearson is computable for this
class of users is only 2.74 (0.0056% of the users). Instead, by propagating trust, it is
possible to reach 94.54 users in just 2 steps and 9120.78 in 4 steps (see Table 4).

This table tells that on a dataset of real users (Epinions), trust propagation is
potentially able to predict a trust score in many more users than the traditional RS
technique of computing user similarity over the ratings matrix using the Pearson
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Userbase Propagating Trust (up to distance) Using Pearson
1 2 3 4

All users 9.88 400 4386 16334 161
Cold start users 2.14 94.54 1675 9121 2.74

Table 4 Mean number of comparable users with different methods: Trust and Pearson correlation
coefficient. For trust, we indicate the mean number of users reachable through some trust chain in at
mostx steps. For Pearson, we indicate the mean number of users against which Pearson coefficient
is computable (i.e. overlap of at least 2 items). Both are computedover every user (even the ones
with 0 ratings or 0 friends).

Correlation Coefficient. Note also that, because of the sparsity of the rating data, the
Pearson Correlation Coefficient is usually computed only based on a small number
of overlapping items, producing a noisy and unreliable value. This difference in
the number of users in which it is possible to compute similarity and trust is even
exacerbated for cold start users. These users are usually the largest portion of users
and also the ones to benefit most from good quality recommendations.

Since by propagating trust it is possible to reach more usersand hence to com-
pute a predicted trust score in them and to count them as neighbours, the prediction
coverage of the RS algorithm increases. In fact the larger the trust propagation hori-
zon, the greater the coverage (see columns MT1, MT2 and MT3 ofTable 2 and 3).
For instance, on all ratings, the ratings coverage increases from 28.33% for MT1, to
60.47% for MT2, to 74.37% for MT3. By continuing to propagatetrust (i.e. expand-
ing the trust propagation horizon) it is possible to consider more and more users as
possible neighbours and hence to arrive at 88.20%, the ratings coverage of TrustAll
which considers every user who provided a rating. The downside of this is that the
error increases as well. For example, on cold start users, the MAUE is 0.674 for
MT1, 0.820 for MT2 and 0.854 for MT3. These results say that by propagating
trust it is possible to increase the coverage (generate morerecommendations) but
that it also considers users who are worse predictors for thecurrent user so that the
prediction error increases as well. The trust propagation horizon basically represents
a tradeoff between accuracy and coverage.

4.3.5 Global Trust Metrics not appropriate for Recommender Systems

An additional experiment we performed is about testing the performance of global
Trust Metrics as algorithms for predicting the trust score of unknown users. A
global trust metric predicts the same trust scores in other users for every user. This
technique, like TrustAll, is hence not personalized. We have chosen to run PageR-
ank [24] as global trust metric and to normalize the output value in [0,1]. We call
the Recommender System that uses PageRank for its Trust Metric module,PR. PR
performs similarly to TrustAll, even slightly worse (MAE of0.847 and 0.821 re-
spectively). This means that a global Trust Metric is not suited for Recommender
Systems whose task is to leverage individual different opinions and not to merge all
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Fig. 4 MAE on cold start users for some representative algorithms.

of them into a global average. We also tried to restrict the neighbours to just the first
100 users as ranked by PageRank but this algorithm (calledPR100) - while of course
reducing the coverage - reports even larger errors (MAE of 0.973). The reason be-
hind these bad performances is that globally trusted users (as found by PageRank)
tend to be peculiar in their rating patterns and provide morevaried ratings so that
averaging them generates larger errors. In contexts such asunderstanding which is
the most relevant web page about a certain topic or the most relevant scientific pa-
per, global trust metrics such as PageRank can be highly effective. However global
trust metrics are not suited for finding good neighbours, especially because the task
of RSs is to provide personalized recommendations while global trust metrics are
unpersonalized. We also showed in [15] that also in social contexts local trust metric
performs better. This is especially true for controversialusers, for which a common
agreement cannot exist. We suggested how it might be important for the healthiness
of a society to favor diversity of opinons and not to force everyone to suffer from
the tyranny of the majority [15] and hence to adopt local trust metrics.

4.3.6 Combining Estimated Trust and User
Similarity

In the architecture of Trust-aware Recommender Systems (Figure 2), the “rating
predictor” module takes as input both the Estimated Trust matrix and the User Sim-
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Fig. 5 Ratings coverage on cold start users for some representative algorithms.

ilarity matrix. The idea is that the weight of a neighbour used in Equation 2 can be
derived both from the user similarity value computed by the Similarity Metric (Pear-
son Correlation Coefficient in our case) and the predicted trust value computed by
a Trust Metric. We have already commented on the number of users for which it is
possible to compute a similarity weight or a predicted trustin the previous subsec-
tion [14]. However, in order to devise a way of combining these two matrices, it is
interesting to analyze how much they overlap. As previouslyreported, the number
of users reachable in one step (the ones used by MT1) are on average 9.88 and the
number of users in which a user similarity coefficient is computable are on average
160.73. The two matrix rows overlap only on 1.91 users on average, that is only for
1.91 users we have both a predicted trust and a user similarity.The number of users
reachable propagating trust up to distance 2 is 399.89. Comparing it again with the
number of users in which a similarity coefficient is computable (160.73), the aver-
age number of users present in both lists is 28.84. These numbers show how Pearson
Correlation coefficient and MoleTrust address different portions of the user base in
which they are able to compute a weight. So, in order to combine these weights,
we tested the simple technique of computing a weighted average when there are
two weights available and, in case only one is available, of using that. We call this
techniqueCF+MTx: for example the system that combine CF and MT1 is called
CF+MT1. The results are not very good. When comparing CF+MT1 with CF and
MT1 for example, we see that the coverage is greater than the coverage of the two
techniques. This is of course to be expected since CF+MT1 considers both the users
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for which it is possible to predict a trust score (as MT1 does)and the users for
which it is possible to compute a user similarity (as CF does). However, the error
of CF+MTx generally lies in between of CF and MTx, that is worse than MTx and
better than CF. The problem is that, as we reported earlier, CF is almost never able
to find good neighbours and hence making an average of the users who are similar
and of the users that are trusted produces worse results thanjust considering trusted
users. Since techniques that used only trust were superior in previous tests to CF-
based ones, we also try to just use the predicted trust score when both the weights
were available but the results are very similar.

5 Discussion of results

In this section we summarize and discuss the most important results of the presented
experiments. The first important result it that consideringonly the ratings of di-
rectly trusted users is the technique that, in general, achieves the smallest error with
an acceptable coverage. The comparative improvement over the other techniques is
particularly evident with regard to controversial items and black sheep, two of the
most important and challenging views. With regard to cold start users, standard CF
techniques totally fail and are not able to generate any recommendation. Instead, by
considering ratings of trusted users we achieve a very smallerror and are able to
produce a recommendation for almost 17% of the users. We can therefore state that
providing a single trust statement is an easy, effective andreliable way of bootstrap-
ping the Recommender System for a new user. It is important tounderline that the
evidence is based on experiments carried out on a real world,large dataset. In par-
ticular the Epinions datasets allowed us to explore topics which were not addressed
before in research papers, such as cold start users and otherviews. Using our local
Trust Metric MoleTrust in order to propagate trust allows users trusted by trusted
users (at distance 2 from active user in the directed trust network), or even further
away users, to be considered as possible neighbours. In thisway, the coverage in-
creases significantly, but the error increases as well. Thismeans that ratings of users
at distance 2 (or more) are less precise and less useful than ratings of users at dis-
tance 1, i.e. directly trusted by the active user. However itis an open issue to see if
different local trust metrics are able to extract just some of the other users such that
their ratings are really effective in improving the recommendation accuracy. In fact,
this method can be used to evaluate the quality of different trust metrics, i.e. a better
trust metric is the one that is able to find the best neighboursand hence to reduce the
prediction error. As a last point we would like to highlight how Collaborative Fil-
tering, the state of the art technique, performed badly in our experiments, especially
on cold start users (which in fact are more than 50% in our dataset). The reason
for this lies in the characteristics of the datasets used forevaluation. In previous re-
search evaluations the most used dataset was MovieLens, while we used a dataset
derived from the online community of Epinions.com. As we have already explained
they present very different characteristics. It is still anopen point to understand how
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much the different datasets influence the evaluation of different algorithms’ per-
formances. In order to help this process, we released the dataset we crawled from
Epinions. The dataset is downloadable at http://www.trustlet.org/wiki/epinions.

6 Conclusions

In this chapter we have presented our proposal for enhancingRecommender Sys-
tems by use of trust information: Trust-aware Recommender Systems. We have pre-
sented a deep empirical evaluation on a real world, large dataset of the performances
of different algorithms ranging from standard CF to algorithms powered with local
or global trust metrics, from the combination of these to baseline algorithms. We
have also segmented the evaluation only on certain views (cold start users, contro-
versial items, etc.) over the dataset in order to better highlight the relative merits of
the different algorithms. The empirical results indicate that trust is very effective in
alleviating weaknesses inherent to RSs. In particular, thealgorithms powered with
MoleTrust local trust metric are always more effective thanCF algorithm, which
surprisingly performs even worse than simple averages whenevaluated on all the
ratings. This difference is especially large when considering cold start users, for
which CF is totally uneffective. The trust propagation horizon represents a trade-
off between accuracy and coverage, i.e. by increasing the distance to which trust is
propagated by the local trust metric the prediction coverage increases but the error
increases as well. Results also indicate that global trust metrics are not appropriate
in the context of RSs. Given that the user similarity assessment of standard CF is not
effective in finding good neighbours, the algorithms that combine both user similar-
ity weight and predicted trust weights are not able to perform better than algorithms
that just utilize trust information.
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